NJM 2248

3-INPUT VIDEO SUPER IMPOSER

GENERAL DESCRIPTION

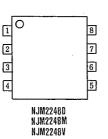
The NJM2248 is 3-input video switch for video and audio signal. Two input terminals have sink-chip clamp function and so it is applied to fixed DC level of video sighal. The other input terminal is transistor base input for luminant signal and so luminant level may be easily fixed by outer circuit. Its operating supply voltage range is 4.75 to 13V and bandwidth is 10MHz. Cross-talk is 70dB (at 4.43MHz).

FEATURES

.

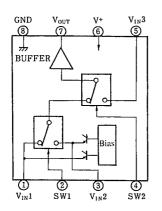
5

JRC

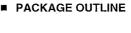

(+4.75V~+13V)

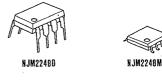
DIP8, DMP8, SIP8, (SSOP8)

- Operating Voltage 3 Input-1 Output
- Internal Clamp Function (Vin1, Vin2)
- Internal Luminance Signal Control Function (VIN3)
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range
- Package Outline
- Bipolar Technology


APPLICATION

- VCR, Video Camera, AV-TV, Video Disc Player
- **PIN CONFIGURATION** 掘


	PIN FUNCTION 1. VIN 1 2. SW 1 3. VIN 2 4. SW 2		
	5. VIN 3		
1 2 3 4 5 6 7 8	6.V+		
	7. Vouт		
NJM2248L	8. GND		


BLOCK DIAGRAM

INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW I	SW 2	OUTPUT SIGNAL	
L	L	VIN 1	
н	L	V _{IN} 2	
L/H	н	V _{IN} 3	

NJM2248V

NJM2248L

5-150

ð.

(V+=5V, Ta=25℃)

ABSOLUTE MAXIMUM RATINGS			
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V,	15	v
Power Dissipation	Po	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	Ĉ

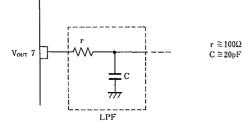
ELECTRICAL CHARACTERISTICS

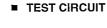
SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT.
V+		4.75	/	13.0	v
lcc	$S_1 = S_2 = S_3 = S_4 = S_5 = 1$	_	10.5	14.0	mA
Gy	$V_1 = 2.5 V_{P-P}, 100 \text{ Hz}, V_0 / V_1$	-0.5		+0.5	dB
Gr	$V_1 = 2.0 V_{P-P}$, $V_0(10 MHz) / V_0(100 kHz)$	- 1.0	0	+ 1.0	dB
DG	$V_1 = 2V_{P-P}$, Staircase Signal	·	0		%
DP	V ₁ =2V _{P-P} , Staircase Signal	-	0		deg
СТ	$V_1 = 2.0V_{P-P}$, 4.43MHz, V_0/V_1 (note 1)	—	- 70	1 —	dB
VcH	All inside SW: ON	2.4		- 1	v
	All inside SW: OFF	. —	—	0.8	V ·
Ro		-	10	-	Ω
	V ⁺ Icc Gv Gr DG DP CT VcH VcL	V+ I_{CC} $S1 = S2 = S3 = S4 = S5 = 1$ G_V $V_1 = 2.5V_{P-P}, 100kHz, V_O/V_1$ G_{Γ} $V_1 = 2.0V_{P-P}, V_0(10MHz)/V_0(100kHz)$ DG $V_1 = 2.0V_{P-P}, V_0(10MHz)/V_0(100kHz)$ DG $V_1 = 2V_{P-P}, Staircase Signal$ DP $V_1 = 2V_{P-P}, Staircase Signal$ CT $V_1 = 2.0V_{P-P}, 4.43MHz, V_0/V_1 (note 1)$ V_{CH} All inside SW: ON V_{CL} All inside SW: OFF	V^+ $V_{1=2.5V_{P-P},100kHz, V_0/V_1$ -0.5 G_V $V_{1=2.5V_{P-P},100kHz, V_0/V_1$ -0.5 G_f $V_{1=2.0V_{P-P}, V_0(10MHz)/V_0(100kHz)$ -1.0 DG $V_{1=2V_{P-P}, Staircase Signal$ - CT $V_{1=2.0V_{P-P}, 4.43MHz, V_0/V_1 (note 1)$ - V_{CL} All inside SW: OFF -	V+ Instance Instance Icc S1=S2=S3=S4=S5=1 - 10.5 Gv V1=2.5VP.P, 100kHz, Vo/V1 -0.5 - Gr V1=2.0VP.P, Vo(10MHz)/Vo(100kHz) -1.0 0 DG V1=2VP.P, Staircase Signal - 0 CT V1=2.0VP.P, 4.43MHz, Vo/V1 (note 1) - -70 VcH All inside SW: ON 2.4 - VcL All inside SW: OFF - -	V+ initial initial I _{CC} S1=S2=S3=S4=S5=1 - 10.5 Gv V1=2.5VP-P, 100kHz, Vo/V1 -0.5 - Gf V1=2.0VP-P, Vo(10MHz)/Vo(100kHz) -1.0 0 DG V1=2VP-P, Staircase Signal - 0 CT V1=2.0VP-P, 4.43MHz, Vo/V1 (note 1) - -70 V _{CH} All inside SW: ON 2.4 - V _{CL} All inside SW: OFF - 0.8

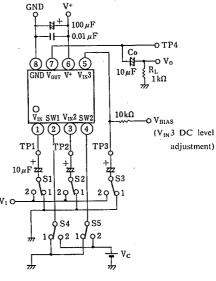
(Note I): Tested on all combination except three below.

a) S1=2, S4=S5=1 b) S2=2, S4=2, S5=1 C) S3=2, S5=2

(Note 2) : Unless specified, tested with $V_{BIAS} = 3V$.

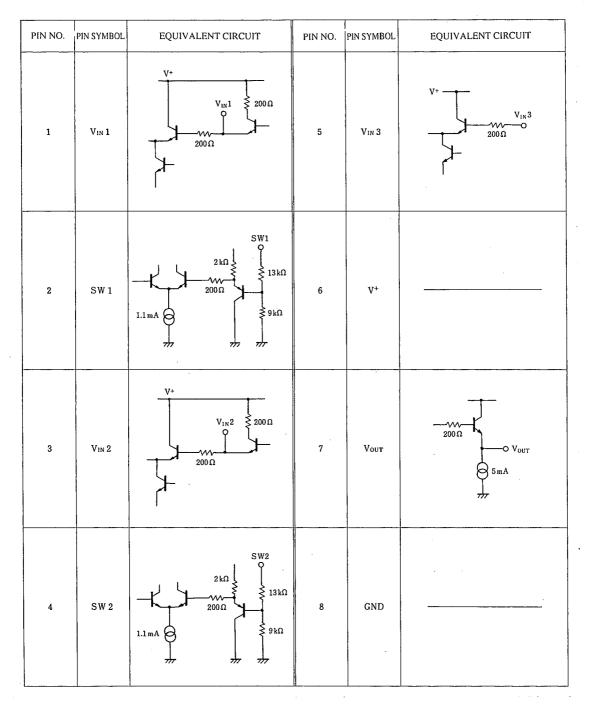

(Note 3) : If it is not shown about switch condition, it is tested on three condtion below.


a) S1=2, S2=S3=S4=S5=1 b) S1=1, S2=2, S3=1, S4=2, S5=1 c) S1=S2=1, S3=2, S4=1 or 2, S5=2 (Note 4): Clamp voltage of Vin1 and Vin2 is about 2/5 of supply voltage (about 2.0V if V+=5V).


New Japan Radio Co., Ltd.

SPECIAL CARES TO BE TAKEN WHEN APPLICATION

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.



5-151

TERMINAL FUNCTION

5

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.